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The significance of C-terminal peptides
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The idea that acetylcholinesterase might have actions

independent of the hydrolysis of its familiar substrate

acetylcholine is far from new: the evidence subse-

quently supporting this suggestion is comprehensively

reviewed elsewhere in this minireview series and, thus,

need not be reiterated here. Nonetheless, two particu-

lar features of a non-enzymatic role need noting. First,

acetylcholinesterase is not only present in neurons

using transmitters such as dopamine, noradrenaline

and serotonin, but, second, is actually secreted in a sol-

uble form from these cells [1,2]. What might be its

function, therefore, as an intercellular messenger in its

own right?

Interestingly enough, the groups of aminergic neu-

rons characterized by the storage and release of acetyl-

cholinesterase cluster together in a continuous hub

extending the length of the brainstem – motor neurons,

locus coeruleus, raphe nuclei and substantia nigra ⁄ ven-
tral tegmental area up to the basal forebrain. Despite

the heterogeneity in transmitters, these different nuclei

all have the common feature of sending diffuse projec-

tions to the outer reaches of the brain. The neurobiol-

ogist Nancy Woolf classed these particular groups as

‘global’ neurons to distinguish them from the more

familiar localized circuitry of the neurons in cerebel-

lum, thalamus, cortex, etc., i.e. ‘serial’ cells [3]. More-

over, global and serial neurons differ in some

fundamental ways, for example, their embryonic prov-

enance, basal and alar plates. However, the difference

that is perhaps most relevant to this minireview is that

global neurons selectively retain a robust plasticity into

and throughout adulthood, accompanied by a specific

sensitivity to trophic factors. Could the distinguishing

developmental feature of these neurons be linked to
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their other distinguishing feature of secreting ‘non-

hydrolytic’ acetylcholinesterase?

Exogenous application of acetylcholinesterase does,

indeed, have a non-hydrolytic action in enhancing

neurite outgrowth, by inducing an influx of calcium

[4–7]. However, at higher doses, or with longer expo-

sure, sustained calcium entry can be toxic to neurons

[8–10]. Notably, a further determining factor in

whether calcium entry triggers trophic or toxic effects,

is age; as neurons mature, an erstwhile trophic level of

intracellular calcium becomes lethal [11]. It is possible

that, within global neurons, acetylcholinesterase has a

dual non-hydrolytic action that ranges along a tro-

phic–toxic axis, depending on the amount, duration of

availability and age.

It may be no coincidence that the global neuron

populations are the very nuclei linked to primary vul-

nerability in the neurodegenerative diseases: Alzhei-

mer’s disease (basal forebrain, raphe nuclei, locus

coeruleus); Parkinson’s disease (substantia nigra, raphe

nuclei, locus coeruleus); motor neuron disease ⁄ALS

(motor neurons) [12,13]. One possibility is that these

neurons specifically will embark on the remorseless

cycle of neurodegeneration, precisely because of their

persistent developmental mechanism. If serial neurons

are damaged in adulthood, other neurons will compen-

sate functionally. By contrast, global neurons will

respond to stroke ⁄oxidative stress ⁄mechanical injury

by calling on their trophic resources in an attempt to

regenerate: but as the subsequent calcium influx is

lethal in the mature cells, the resulting damage will

trigger further attempts to compensate in a pernicious

cycle that arguably characterizes neurodegeneration.

Neurodegenerative diseases may, therefore, be viewed

as aberrant activation of developmental mechanisms,

with the key trophic agent responsible as ‘non-hydro-

lytic’ acetylcholinesterase [14].

In order to understand the precise molecular events

underlying such a scenario, and, hence, prompt novel

forms of treatment for neurodegeneration, the next

step clearly is to identify that part of the acetylcholin-

esterase molecule responsible for this trophic–toxic

action. Towards the C-terminus of the tailed form of

acetylcholinesterase (T-AChE), two peptides of,

respectively, 14 and 30 amino acids (T14 and T30)

have clear cleavage points, and bear a strong homol-

ogy to an equivalent part of the amyloid precursor

protein (Fig. 1A) [14]. When synthetic T14 and

T30 are applied to a variety of preparations, they

exhibit a clear similarity to the trophic–toxic effects

already seen for non-hydrolytic acetylcholinesterase,

by opening specifically and selectively the L-type cal-

cium channel [4,5,15,16]. However, the L-channel is

voltage-gated, and the effect of the peptides, and ace-

tylcholinesterase itself, must be indirect, via a receptor

that, in turn, triggers sustained and significant depo-

larization.

Arguably the most powerful calcium ionophore in

the brain is the nicotinic alpha 7 acetylcholine receptor

(a7-nAChR) [17]. This receptor would also be an

attractive candidate target for the acetylcholinesterase

peptides, because it is co-expressed along with acetyl-

cholinesterase in precisely the same highly transient

period in various brain regions during development

[18]. Moreover, a7-nAChR can bind amyloid [19–24]

and has already been implicated in neurodegenerative

diseases [22,25–27].

Indirect evidence using a range of diverse nAChR

blockers has suggested that T14 binds selectively to an

allosteric site specifically on a7-nAChR in oocytes,

brain slices and cell cultures, modulating calcium influx

underlying short-term plasticity, and chronic, long-term

trophic and toxic effects (Fig. 1B,C). These actions

were sensitive to blockade of a7-nAChR, in the nanom-

olar range [28], prior to non-specific effects in the

micromolar range and upwards, when non-physiologi-

cal effects are observed due to fibril formation [29,30].

More recently, we obtained direct evidence

(C. E. Bond, M. Zimmerman & S. A. Greenfield,

unpublished results) that the target for the acetylcho-

linesterase-peptides is an allosteric site on a7-nAChR.

In a cell line (GH4) stably expressing the receptor, we

have shown high-affinity displacement of alpha-bunga-

rotoxin by both peptides (Fig. 1D). Moreover,

RT-PCR and western blot analysis reveal that

GH4 cells treated for 24 h with T14 ⁄T30 increase

a7-nAChR mRNA expression and protein levels at the

plasma membrane. Could this highly novel signalling

mechanism also operate in non-neuronal systems [31],

where acetylcholinesterase might also have non-hydro-

lytic actions? We studied two possible instances: breast

cancer cell lines [32] and glial cells [33].

In breast cancer cell lines, we found that T14, but

not its scrambled analogue, had a selective action in

the strongly metastatic cell line MDA-MB-231. This

action was selectively blocked by the a7-nAChR antag-

onist methylycaconitine, but not the a4-nAChR

blocker, dihydro-b-ethroidine (Fig. 2A). It may well be

that the mechanism for cell division applicable to neu-

rogenesis might also be extended to tumorigenesis [32].

In cultures of glial cells, oxidative stress of the type

thought to occur as the final common path in neuro-

degeneration, increases the influx of calcium through

L-type calcium channels [16] which, in turn, leads to

enhanced acetylcholinesterase secretion (Fig. 2B):

because we also observed a switching in mRNA from
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the classical membrane-bound ‘T-AChE’ to a prefe-

rential increase in the splice variant for the soluble

readthrough form of acetylcholinesterase (R-AChE;

Fig. 2C) [33], it seems reasonable to conclude that

R-AChE is released in response to stress, in a fashion

comparable with the stress-induced release reported for

neurons [34,35].

However, it is important to note here that R-AChE

is an alternatively spliced form of acetylcholinesterase

that omits exon 6, and does not contain either T14 or
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Fig. 1. Effects of T-AChE C-terminal peptides on a7-nAChR. (A) Comparison of C-terminal amino acid sequences of R- and T-AChE isoforms.

Unique isoform sequences are underlined; arrows indicate the sequence and location of T14 and T30 peptides. (B) (a) Current response of

human a7-nAChR expressing Xenopus oocytes to 100 lM acetylcholine before and during co-application of peptides. Upper, 10 nM T14;

middle, 10 lM T14; lower, 10 lM butyrylcholinesterase 14-amino acid peptide. (b) Effects of T14 on EC50 acetylcholine-induced current

responses in human a7-nAChR-expressing oocytes were plotted as a percentage of the response of acetylcholine alone (mean ± SEM, 10 oo-

cytes). Data were fitted as described previously [28]. (c) Current responses of human a4b2-nAChR-expressing oocytes to 30 lM acetylcholine

before and during co-application of 10 lM T14 (upper) or 10 lM butyrylcholinesterase peptide (lower). Figure modified from Greenfield et al.

[28]. (C) Quantification of effects of a7-nAChR antagonism on in vitro T14-induced toxicity in rat hippocampal organotypic cultures. Cultures

were maintained in serum-free medium in the presence of indicated concentrations of T14 and alpha-bungarotoxin for 14 days and then pro-

cessed for microtubule-associated protein 2 immunochemistry. Neurite outgrowth was measured by selecting cells in a non-biased manner

and using camera Lucida drawings. Experiments were repeated a minimum of three times with separate culture groups; n = 131–134;

**P < 0.01. Figure modified from Greenfield et al. [28]. (D) Comparison of acetylcholinesterase C-terminal peptides T14 and T30 with known

a7-nAChR ligands at concentrations indicated in live cell binding to GH4 cells stably expressing the a7-nAChR; n = 6; MLA, methylylcaconi-

tine; a-BTX, alpha-bungarotoxin; ACh, acetylcholine; IVM, ivermectin (C. E. Bond, M. Zimmerman & S. A. Greenfield, unpublished data).
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T30 within its C-terminus (Fig. 1A). However, preli-

minary data from our laboratory suggest that glial

cells will express a7-nAChR in response to the same

oxidative stress that triggers expression and release of

R-AChE. Indeed, increased a7-nAChR protein expres-

sion in glia in Alzheimer’s disease has already been

reported [36]. What would be the point of co-expres-

sion of a receptor with the variant of an agent that

lacked the ability to bind to it?

One possibility is that such a scenario would be

effectively a short circuit, and that the stress-induced

switching to R-AChE allows communication with

other types of cells. It has been acknowledged for sev-

eral years that astroglia induce neurogenesis from

adult neural stem cells [37], yet the signalling molecule

has not been identified. However, Coleman and Taylor

[38] reported earlier that only when stem cells are

adopting the neural cell line, do they transiently

express acetylcholinesterase. It is tempting to suggest

that oxidative stress has a preferential effect, first, on

glial cells, which are known to be more responsive

than neurons to changing conditions in the local

environment [39]. Such conditions trigger influx of cal-

cium through voltage-gated L-channels which, in turn,

leads to a switching to expression and release of

R-AChE and concomitant expression of a7-nAChR in

readiness for the indirect effect of R-AChE acting on
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Fig. 2. Potential signalling mechanism involving T-AChE C-terminal

peptides. (A) Effects of two cholinergic antagonists, methyllycaconi-

tine and dihydro-b-erythroidine, 100 nM each, on horseradish per-

oxidase uptake with endogenous peroxidase activity subtracted

(denoted by E540). CP, control ⁄ scrambled-peptide. The effect of

each drug was determined by co-incubation during horseradish per-

oxidase uptake. Figure modified from Onganer et al. [32]. (B) Effect

of calcium channel blockers on oxidative stress-induced acetylcho-

linesterase release. Astroglia were exposed to 0.5 mM tert-butyl

hydroperoxide for 1 h in the presence and absence of verapamil

(10 lM), nimodipine (10 lM), nifedipine (10 lM), x-conotoxin MVIIC

(100 lM) and 1,1¢-diheptyl-4,4¢-bipyridinium dibromide (10 lM). Cells

were recovered for 1 h, and the medium was sampled and assayed

for acetylcholinesterase activity. Asterisks indicate values signifi-

cantly different from controls (P < 0.005; n = 6). Figure modified

from Bond and Greenfield [16]. (C) Quantitative RT-PCR analysis of

acetylcholinesterase isoform expression 1 h post-treatment in con-

trol and tert-butyl hydroperoxide-treated (0.5 mM, 1 h) astroglia.

Average R-AChE expression increased 240% (P < 0.001), whereas

T-AChE expression decreased by 35% (P = 0.054) in treated cells

compared with controls. Results were obtained from 10 experi-

ments each performed in triplicate. Values were normalized to

internal TATA-binding protein controls, which showed no variability

between control and treated samples. Figure modified from Bond

et al. [33]. (D) Schematic depicting the proposed short-circuit posi-

tive-feedback mechanism between astroglia and neurons involving

different acetylcholinesterase isoforms.
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other cell types. The cell type in question may well be

stem cells, which convert to neurons once modulated

by the released R-AChE. The new neurons are then

able to express their own, standard (T) form of acetyl-

cholinesterase containing T14 and T30 which, under

appropriate conditions, would be cleaved to feedback

on the original glial cells, via the stress-induced expres-

sion of a7-nAChR. As a consequence, calcium would

enter the glial cell and the cycle would start again

(Fig. 2D).

In this way, a relatively short duration of oxidative

stress could be amplified into a sustained process for

neurogenesis. Such a system could be valuable in, say,

the hippocampus, where adult neurogenesis has been

reported as a basis for cognitive prowess [40,41].

However, within the global neuron population the

generation of still higher levels of acetylcholinesterase-

peptides may shift trophic levels of calcium into the

toxic range, with resultant neurodegeneration.

Although both T14 and T30 clearly have intriguing

actions and possible interactions, in cancer cells, glia

and neurons, the vital question remains as to whether

either or both peptides are cleaved from the acetylcho-

linesterase molecule in true physiological or pathologi-

cal conditions.

Saxena et al. [42] suggested that, indeed, in the

fetus, T-AChE is cleaved to yield a truncated form

that lacks both peptides. Interestingly, this truncated

acetylcholinesterase (T548-acetylcholinesterase) might

also predominate in Alzheimer’s disease where, as in

the fetal brain [43], there is loss of substrate inhibi-

tion [44]. As well as indicating a further possible link

between neurodegeneration and development, the

existence of the truncated T548-acetylcholinesterase
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acetylcholinesterase activity. The activity displayed corresponds to the absolute activity measured for T548-acetylcholinesterase alone (empty
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(*P < 0.05; ***P < 0.005). Figure modified from Zimmermann et al. [45].
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form has prompted investigation of whether its par-

ticular properties could be exploited as an eventual

tool for detecting free acetylcholinesterase-peptides.

Might incubation of acetylcholinesterase-peptides with

exogenous T548-acetylcholinesterase result in an inter-

action that may, in turn, modify the activity of the

enzyme?

Zimmermann et al. [45] have been able to answer in

the affirmative. We have shown that, due to a high net

positive charge, incubation of T548-acetylcholinester-

ase with both T14 and T30 results in a dose-dependent

enhancement of catalytic activity by up to 600%, with

T30 the more potent compound (Fig. 3A). In addition,

incubation of T548-acetylcholinesterase with activity-

enhancing molecules leads to a delay of substrate inhi-

bition (Fig. 3B) that is most likely indicative of

involvement of the peripheral anionic site, which is

unobstructed only in the monomer [46], and which is

readily receptive to specific positively charged peptides.

Importantly, all T548-acetylcholinesterase molecular

mass species are significantly enhanced in their activity,

whereas the activity of full-length species is not mark-

edly changed upon incubation (Fig. 3C).

As yet, however, despite circumstantial evidence and

promising tools, a definitive and direct demonstration

of free peptides T14 or T30 in brain tissue, under

either physiological or pathological conditions, remains

an urgent goal. If, however, the processes described

here do take place in the human brain, then they

might offer a highly novel, yet, attractive approach to

neurodegeneration. If detection of peptide(s) could

serve as a surrogate marker, then the course of an

individual’s aetiology could be monitored in a bespoke

fashion and treated accordingly: if detection of early

stages of the disease were possible even presymptomat-

ically, then early medication might slow the course of

deterioration or, at least, give the patient and carer the

maximal time to prepare for what lies ahead.

Moreover, if the allosteric site of a7-nAChR is,

indeed, a good target for modulating calcium entry,

selective blockade might shift the trophic–toxic axis

back in the desired direction. Such medication could,

therefore, break the pernicious cycle of neuronal self-

destruction. Best of all, however, would be to combine

these two prospects. If it were possible to detect

neurodegeneration before onset of symptoms, and then

administer a treatment that arrested further cell death,

the symptoms would never appear – an effective ‘cure’.

Such a prospect remains, of course, purely speculative;

but the more we can characterize non-hydrolytic func-

tions of acetylcholinesterase and understand their sig-

nificance, the more likely it may be that the dream

could become a reality.
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