Brai E, Stuart S, Badin AS & Greenfield SA. (2017) "A novel ex-vivo model to investigate the underlying mechanism in Alzheimer’s disease." Front. Cell. Neurosci. Doi: 10.3389/fncel.2017.00291.

Greenfield SA, Badin AS, Ferrati G, Devonshire IA. (2017) "Optical imaging of the rat brain suggests a previously missing link between top-down and bottom-up nervous system function." Neurophoton. 4(3), 031213 (2017), doi: 10.1117/1.NPh.4.3.031213.

Garcia-Ratés, S and Greenfield SA (2017) "Cancer and neurodegeneration: two sides, same coin?" Oncotarget, 2017, Vol. 8, (No. 14), pp: 22307-22308 View PDF

Badin, AS, Fermani, F and Greenfield, SA. (2017) "The features and functions of neuronal assemblies: possible dependency on mechanisms beyond synaptic transmission." Front Neural Circuits. 2017 Jan 10;10:114. doi: 10.3389/fncir.2016.00114. eCollection 2016. View PDF

Pepper, C, Tu, H, Morrill, P, Garcia-Rates, S, Fegan, C and Greenfield, S. (2017) "Tumour cell migration is inhibited by a novel therapeutic strategy antagonising the alpha-7 receptor." Oncotarget. 2017 Feb 14;8(7):11414-11424. doi: 10.18632/oncotarget.14545. View PDF

Garcia-Ratés, S, Morrill, P, Tu, H, Pottiez, G, Badin, A-S, Tormo-Garcia, C, Heffner, C, Coen, CW & Greenfield, SA. (2016) (I) "Pharmacological profiling of a novel modulator of the ?7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains." Neuropharmacology, vol 105, pp. 487-499., 10.1016/j.neuropharm.2016.02.006. View PDF

Badin AS, Morrill P, Devonshire IM, Greenfield SA. (2016) (II) "Physiological profiling of an endogenous peptide in the basal forebrain: Age-related bioactivity and blockade with a novel modulator." Neuropharmacology, 105:47-60. doi: 10.1016/j.neuropharm.2016.01.012. View PDF

Small GW, Greenfield S. "Current and Future Treatments for Alzheimer Disease." Am J Geriatr Psychiatry. 2015 Nov; 23 (11):1101-5. doi: 10.1016/j.jagp.2015.08.006.

Supporting Publications

Garcia-Ayllón, M.-S., E. Llorens, J. Avila, J. Alom and J. Saez-Valero (2014) “Elevated Acetylcholinesterase Levels by Hyperphosphorylated Tau Overexpression.” Alzheimer’s & Dementia 10(4): P651.

Horvath et al. (2014) Neuropathology of Parkinsonism in patients with pure Alzheimer’s disease. J Alzheimers Dis. 39 (1): 115-20.

Irwin, D. J., Lee, V. M. & Trojanowski, J. Q. Parkinson’s disease dementia: convergence of alpha synuclein, tau and amyloid-beta pathologies (2013) Nature reviews. Neuroscience 14, 626-636,

Trillo et al. (2013) Ascending monoaminergic systems alterations in Alzheimer’s disease, translantic basic science into clinical careNeurosci Biobehav Rev. 37 (8): 1363-79.

Greenfield SA (2013) Discovering and targeting the basic mechanism of neurodegeneration: the role of peptides from the c-terminus of acetylcholinesterase Chemico-Biological Interactions. 2013 May 25;203(3):543-6. doi: 10.1016/j.cbi.2013.03.015. Epub 2013 Apr 3. 

Badin, S., Eraifej, J,. Greenfield, S. A. (2013) High-resolution spatio-temporal bioactivity of a novel peptide revealed by optical imaging in rat orbitofrontal cortex in vitro: possible implications for neurodegenerative diseases. Neuropharmacology. 2013 Oct;73:10-8. doi: 10.1016/j.neuropharm.2013.05.019. Epub 2013 May 24. 

Garcia-Ratés, S., Lewis, M., Worral R., & Greenfield S. A. (2013) Additive Toxicity of β-Amyloid by aNovel Bioactive Peptide In Vitro: Possible Implications for Alzheimer’s Disease. PLoS ONE 8(2):e54864. doi:10.1371/journal.pone.0054864 PLOS1. 

Halliday, A. C. & Greenfield, S. A. (2012) From Protein to Peptides: a Spectrum of Non-Hydrolytic Functions of Acetylcholinesterase. Protein & Peptide Letters 19, 165-172, doi:10.2174/092986612799080149. 

Braak & Del Tredici. (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr opin Neurol. 25 (6): 708-14.

Szot (2012) Common factors among Alzheimer’s disease, Parkinson disease, and epilepsy: possible role of the noradrenergic nervous system. Epilepsi 53 (1): 61-6.

Attems et al. (2012) The relationship between subcortical tau pathology and Alzheimer’s diseaseBiochem Soc Trans. 40 (4): 711-5.

Garcia-Ayllon, M. S., D. H. Small, J. Avila and J. Saez-Valero (2011) “Revisiting the Role of Acetylcholinesterase in Alzheimer’s Disease: Cross-Talk with P-tau and beta-Amyloid.” Front Mol Neurosci 4: 22.

Braak et al. (2011) Stages of the Pathologic Process in Alzheimer Disease: Age Categories From 1 to 100 YearsJournal of Neuropathology & Experimental Neurology. 70(11):960-969.

Braak & Del Tredici (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta neuropathol. 121 (5): 589-95.

Lea Tenenholz Grinberg, Udo Rueb and Helmut Heinsen. (2011) Brainstem: Neglected Locus in Neurodegenerative Diseases. Front Neuro); 2: 42.

Halliday, A. C., Kim, O., Bond, C. E. & Greenfield, S. A. (2010) Evaluation of a technique to identify acetylcholinesterase C-terminal peptides in human serum samples. Chem-Biol Interact 187, 110-114, doi:10.1016/j.cbi.2010.02.010. 

Garcia-Ayllon, M. S., I. Riba-Llena, C. Serra-Basante, J. Alom, R. Boopathy and J. Saez-Valero (2010) “Altered levels of acetylcholinesterase in Alzheimer plasma.” PLoS One 5(1): e8701.

Bond, C. E., Zimmermann, M. & Greenfield, S. A. (2009) Upregulation of alpha 7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides. Plos One 4, -, doi:Artn E4846 Doi 0.1371/Journal.Pone.0004846. 

Simic et al. (2009) Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neuobiol. 35 (6): 532-54.

Greenfield SA, Zimmermann M. and Bond CE. (2008) Non-hydrolytic functions of ACHE: The significance of C-terminal peptides. Federation of European Biochemical Societies. FEBS Journal 275, pp 604-611.

Zimmermann, M., Grosgen, S., Westwell, M. S. & Greenfield, S. A. (2008) Selective enhancement of the activity of C-terminally truncated, but not intact, acetylcholinesterase. J Neurochem 104, 221-232, doi:DOI 10.1111/j.1471-4159.2007.05045.x. 

Greenfield, S. A., Zimmermann, M. & Bond, C. E. (2008) Non-hydrolytic functions of acetylcholinesterase – The significance of C-terminal peptides. Febs J 275, 604-611, doi:DOI 10.1111/j.1742-4658.2007.06235.x. 

Weinshenker (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5 (3): 342-5.

Bond, C. E. & Greenfield, S. A. (2007) Multiple cascade effects of oxidative stress on astroglia. Glia 55, 1348-1361, doi:Doi 10.1002/Glia.20547. 

Bond, C. E. & Greenfield, S. A. (2007) L-type voltage-gated calcium channels regulate astroglial responses to oxidative Stress. Neuron Glia Biol 2, S71-S71.

Haglund et al. (2006) Locus coeruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment.Neurophatology 26 (6): 528-32.

Onganer, P. U., Djamgoz, M. B. A., Whyte, K. & Greenfield, S. A. (2006) An acetylcholinesterasederived peptide inhibits endocytic membrane activity in a human metastatic breast cancer cell line. Bba-Gen Subjects 1760, 415-420, doi:DOI 10.1016/j.bbagen.2005.12.016. 

Bond, C. E. et al. (2006) Astroglia up-regulate transcription and secretion of ‘readthrough’ acetylcholinesterase following oxidative stress. Eur J Neurosci 24, 381-386, doi:DOI 10.1111/j.1460-9568.2006.04989.x. 

Greenfield SA (2005) A peptide derived from acetylcholinesterase is a pivotal signaling molecule in neurodegeneration. Chemico-Biological Interactions Vol 157-158, pp 122-218. 

Mann, E. O., Tominaga, T., Ichikawa, M. & Greenfield, S. A. (2005) Cholinergic modulation of the spatiotemporal pattern of hippocampal activity in vitro. Neuropharmacology 48, 118-133, doi:DOI 10.1016/j.neuropharm.2004.08.022. 

Zbarsky, V., Thomas, J. & Greenfield, S. (2004) Bioactivity of a peptide derived from acetylcholinesterase: involvement of an ivermectin-sensitive site on the alpha 7 nicotinic receptor. Neurobiology of Disease 16, 283-289, doi:10.1016/j.nbd.2004.02.009. 

Greenfield, S. A., Day, T., Mann, E. O. & Bermudez, I. (2004) A novel peptide modulates alpha 7 nicotinic receptor responses: implications for a possible trophic-toxic mechanism within the brain. J Neurochem 90, 325-331, doi:DOI 10.1111/j.1471-4159.2004.02494.x. 

Emmett, S. R. & Greenfield, S. A. (2004) A peptide derived from the C-terminal region of acetylcholinesterase modulates extracellular concentrations of acetylcholinesterase in the rat substantia nigra. Neurosci Lett 358, 210-214, doi:DOI 10.1016/j.neulet.2003.12.078. 

Day, T. & Greenfield, S. A. (2004) Bioactivity of a peptide derived from acetylcholinesterase in hippocampal organotypic cultures. Exp Brain Res 155, 500-508, doi:DOI 10.1007/s00221-003-1757-1. 

Whyte, K. A. & Greenfield, S. A. (2003) Effects of acetylcholinesterase and butyrylcholinesterase on cell survival, neurite outgrowth, and voltage-dependent calcium currents of embryonic ventral mesencephalic neurons. Exp Neurol 184, 496-509, doi:Doi 10.1016/S0014-4886(03)00386-8. 

Day, T. & Greenfield, S. A. (2003) A peptide derived from acetylcholinesterase induces neuronal cell death: characterisation of possible mechanisms. Exp Brain Res 153, 334-342, doi:DOI 10.1007/s00221-003-1567-5. 

Bon, C. L. M. & Greenfield, S. A. (2003) Bioactivity of a peptide derived from acetylcholinesterase: electrophysiological characterization in guinea-pig hippocampus. Eur J Neurosci 17, 1991-1995, doi:DOI 10.1046/j.1460-9568.2003.02648.x. 

Zarow et al. (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimers and Parkinson diseasesArch Neurol 60 (30): 337-41.

Greenfield, S. & Vaux, D. J. (2002) Parkinson’s disease, Alzheimer’s disease and motor neurone disease: Identifying a common mechanism. Neuroscience 113, 485-492. 

Day, T. & Greenfield, S. A. (2002) A non-cholinergic, trophic action of acetylcholinesterase on hippocampal neurones in vitro: Molecular mechanisms. Neuroscience 111, 649-656, doi:Pii S0306-4522(02)00031-3. 

Woolf, N. J. (1996) “Global and serial neurons form A hierarchically arranged interface proposed to underlie memory and cognition.” Neuroscience 74(3): 625-651.

Greenfield, SA (1992) Cell death in Parkinson’s disease. Essays in Biochem. 27, pp 103-118. 

Arendt, T., M. K. Bruckner, M. Lange and V. Bigl (1992) “Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development–a study of molecular forms.” Neurochem Int 21(3): 381-396.

Card, J. P., R. P. Meade and L. G. Davis (1988) “Immunocytochemical localization of the precursor protein for beta-amyloid in the rat central nervous system.” Neuron 1(9): 835-846.

Bondareff et al. (1987) Neuronal degeneration in locus coreuleus and cortical correlates of Alzheimers disease. Arch Neurol 60 (3): 337-41.

Rossor MN. (1981) Parkinson’s disease and Alzheimer’s disease as disorders of the isodendritic core. Br Med J (Clin Res Ed). 19 Dec 12;283(6306):1588-90.